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Relative Pose with 
Distributed accelerometers

Grasp Type Identification

•	 Tri-axial acceleration sensors.
•	 Hand-distributed accelerometers with one in each finger and one in the palm.
•	 Observing gravity to have frame of reference.
•	 Method to determine the rotation between two frames of reference.

-	 Based on Horn’s closed-form solution for absolute orientation using unit quaternions.

•	 Manhattan distance used for comparison with library.

•	 Instrumented objects - Rubik Cube; 
Soda Can.

•	 Cumulative tactile force distribution 
on the instrumented cube, 9 sensing 
cells per coloured face.

•	 Comprehensive  Grasp Taxonomy 
which includes 33 different grasp types:
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Gesture Recognition

•	 Gestures of the Portuguese Sign Language.

•	 Overview of the phases for gesture recognition.
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Results for Grasps

Results for Gesture

•	 Result of grasp type identification test. Distance of the observed grasp to the 
grasps in the library, and masking of range of grasps using the tactile data. 
The identified grasp type is the power/palm/2-5 grasp, corresponding to the 
lowest value of the distance, the cell count of the trial was 17, indicating a 
power grasp:

•	 Cumulative factile force distribu-
tion on the instrumented cube, 9 
sensing cells per coloured face.:
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•	 Modulus of acceleration and the 
3-level motion classifier. The re-
sult is a fairly static Level-1 which 
is used to identify the relevant 
frames.
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•	 Rotation reprojection error after the calcu-
lation of the quaternions of rotation. The 
reprojection error is relatively very small 
making the method valid for estimating 
the relative angular pose between the fin-
gers and the backpalm of the hand.

•	 Manhattan distances comparing 
a gesture against the library. The 
result is correct.

values have in the recognition. Comparing a gesture against the library produced the 
results like the ones shown in Table 1.  
Table 1 - Manhattan distances from the current gesture to the ones in the library. 

Gesture G H K L O Q R S T U V W 

Distance 6.0 3.1 4.2 3.9 4.2 5.2 5.3 5.6 4.3 4.2 7.0 4.4 
             

Gesture X Y Z 1 2 3 5 4 6 7 8 9 
Distance 7.4 4.0 5.0 6.0 3.9 6.2 5.5 6.3 4.3 6.4 5.1 4.2 

 
In Table 1 it is possible to see a list of all the gestures included in the library and the 

distance, in a Manhattan geometry of the current gesture to the ones in the library. 
The gesture performed that resulted in the comparison shown in Table 1, was indeed 
the “H” gesture. The visual perspective of the gesture is shown in Fig. 1. 

5.2 Visualization 

The visualization was structured to 
allow the representation of the hand 
pose processed in the recognition 
process and also directly from a real-
time connection to the Acceleglove 
[9]. The visualization of the results 
that came from Matlab was possible to represent because Matlab outputted the Roll 
Pitch and Yaw values for each sensor it processed. Having blender prepared to read 
those values and running the Python 
routines defined in blender a correct 
pose from blender was possible to 
represent. Fig. 8 shows a render of the pose. Again, the relatively small error in 
calculating the hand pose allowed the visual representation as seen in this figure. 

When this visualization was performed in real time, an external (to Blender) script 
was running. This script would provide Blender the pose information for each sensor. 
At a framerate of about 29fps, Blender updates the pose of every joint in the hand and 
renders it. This performance was achieved in a Macbook Pro 2.5GHz from 2009. 

6   Conclusions 
The recognition of gestures is a vast area of research. In this work a novel approach 

using distributed accelerometers in the hand to recognize the gestures solely by the 
measurement of acceleration was presented. 

By using an intelligent distribution of accelerometers on the hand it was possible to 
create an algorithm to recognize a hand gesture. Our approach relies on the vertical 
reference provided by gravity to infer angular pose, however in this way rotations 
about vertical axis are not observable. To overcome this limitation, a novel approach, 

Fig. 8: A render from Blender showing the 
encountered angular pose of the hand. 
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Fig. 6. Modulus of sensed acceleration vectors for sample point selection.

Fig. 7. Re-projection error of the estimated angular finger and object pose.

and take the angular mismatch as an error measure. From the results
presented in fig. 7 we see that the r.m.s error can be up to 10 deg,
but this is enough for our grasp type classification.

Tables I shows the grasp type identification, indicating the
distances of the observed relative pose to the grasp types in the
library, as well as the contribution of the tactile data to distinguish
power grasps from precision grasps. The gesture being performed
is a power/palm/2-5 grasp as shown in figure 4. It is also the nearest
neighbour considering a Manhattan distance in the feature space,
in this case about 27 deg.

VI. CONCLUSIONS AND FUTURE WORK

We presented a clutter free and easily deployable system of
identifying human natural manipulation of objects. By using small
accelerometers distributed on the back of the fingers and hand, and
instrumenting the manipulated object, we are able to determine the
grasp type and contact points with the object. Preliminary results
show that the method works, although many aspects need to be
worked upon to improve robustness and range of detected grasp
types. Although for our experimental setup we used a commercial
glove with accelerometers, we intend to build a custom one that
can attach the minute sensors to the fingers and palm without a
full glove. The used instrumented object, the cube, is wired, but
we have under final development wireless versions including the
soda can object shown in fig. 4. This will enable studying human
manipulation in diverse environments and situations.

We intend to explore the use of more accelerometers, one on
each finger segment, to enable the full reconstruction of the hand
pose, making it more robust in identifying the grasp types. Going
beyond identifying sequences of stable grasps, we also intend to
further explore in-hand manipulation using the dynamic inertial
data to classify intrinsic hand movements as proposed in [16].
Here intrinsic movements are defined as coordinated movements

TABLE I
RESULT OF GRASP TYPE IDENTIFICATION

power power power power prec. prec. prec. prec. power int prec.
Op : VF Pal : 2-5 Pad: 2 Pad: 2-3 Pad: 2-4 Pad: 2 Pad: 2-3 Pad: 2-5 Pad: 2-5 Pal: 2-5 Side: 2 Pad: 2-5

m.. dist. (deg): 27 51 53 61 31 32 33 44 136 207 56
tactile cell cnt: 18 13 11 10 6 6 8 9 11 2 2
Distance of the observed grasp to the grasps in the library, and masking of range of grasps using the tactile data. The identified grasp type is
the power/palm/2-5 grasp, corresponding to the lowest value of the distance, the cell count of the trial was 18, indicating a power grasp.

of the digits to manipulate and object within the hand. They are
contrasted with extrinsic movements, defined as movements of a
prehended object by displacement of the hand as a whole. The
intrinsic movements are subdivided into simultaneous, exploring
simple and reciprocal synergies, and sequential patterns. In order
to deal with non-observability issues more accelerometers will be
required and eventually gyrometers and magnectic sensors for the
wrist or palm. The geometric distribution of contact points provided
by the tactile sensing on the object can also help to overcome non-
observability issues.
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